Sensory-Evoked Spiking Behavior Emerges via an Experience-Dependent Plasticity Mechanism.
Scientific Abstract
The ability to generate action potentials (spikes) in response to synaptic input determines whether a neuron participates in information processing. How a developing neuron becomes an active participant in a circuit or whether this process is activity dependent is not known, especially as spike-dependent plasticity mechanisms would not be available to non-spiking neurons. Here we use the optic tectum of awake Xenopus laevis tadpoles to determine how a neuron becomes able to generate sensory-driven spikes in vivo. At the onset of vision, many tectal neurons do not exhibit visual spiking behavior, despite being intrinsically excitable and receiving visuotopically organized synaptic inputs. However, a brief period of visual stimulation can drive these neurons to start generating stimulus-driven spikes. This conversion relies upon a selective increase in glutamatergic input and requires depolarizing GABAergic transmission and NMDA receptor activation. This permissive form of experience-dependent plasticity enables a neuron to start contributing to circuit function.
Similar content
A clinical grade neurostimulation implant for hierarchical control of physiological activity
Diurnal modulation of subthalamic beta oscillatory power in Parkinson’s disease patients during deep brain stimulation
Cortical signatures of sleep are altered following effective deep brain stimulation for depression
Cortical signatures of sleep are altered following effective deep brain stimulation for depression.
Sensory-Evoked Spiking Behavior Emerges via an Experience-Dependent Plasticity Mechanism.
Scientific Abstract
The ability to generate action potentials (spikes) in response to synaptic input determines whether a neuron participates in information processing. How a developing neuron becomes an active participant in a circuit or whether this process is activity dependent is not known, especially as spike-dependent plasticity mechanisms would not be available to non-spiking neurons. Here we use the optic tectum of awake Xenopus laevis tadpoles to determine how a neuron becomes able to generate sensory-driven spikes in vivo. At the onset of vision, many tectal neurons do not exhibit visual spiking behavior, despite being intrinsically excitable and receiving visuotopically organized synaptic inputs. However, a brief period of visual stimulation can drive these neurons to start generating stimulus-driven spikes. This conversion relies upon a selective increase in glutamatergic input and requires depolarizing GABAergic transmission and NMDA receptor activation. This permissive form of experience-dependent plasticity enables a neuron to start contributing to circuit function.