Spatiotemporal organisation of human sensorimotor beta burst activity.
Scientific Abstract
Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral, and spatiotemporal characteristics, indicating distinct functional roles.
Similar content
Paper
Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation.
2014. Int J Psychophysiol, 91(1):10-5.
Paper
Wireless EEG with individualized channel layout enables efficient motor imagery training.
2015. Clin Neurophysiol, 126(4):698-710.
Paper
Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery.
2015. Neuroimage, 114:438-47.
Paper
Lateralization patterns of covert but not overt movements change with age: An EEG neurofeedback study.
2015. Neuroimage, 116:80-91.