Neuronal Computation Underlying Inferential Reasoning in Humans and Mice.
Everyday we use our memory to guide the decisions we make. We can even infer relationships between separate life events. Yet, it is not clear how the brain supports this process. Here, by conducting experiments with both mice and people, we show that brain cells in a region called the hippocampus support inference by linking memories for separate life events.
Scientific Abstract
Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.
Similar content
Memory reactivation during rest forms shortcuts in a cognitive map.
tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel
A Checklist for Assessing the Methodological Quality of Concurrent tES-fMRI Studies (ContES Checklist): A Consensus Study and Statement
A mechanism for hippocampal memory recall based on excitatory-inhibitory fluctuations in neocortex
Neuronal Computation Underlying Inferential Reasoning in Humans and Mice.
Everyday we use our memory to guide the decisions we make. We can even infer relationships between separate life events. Yet, it is not clear how the brain supports this process. Here, by conducting experiments with both mice and people, we show that brain cells in a region called the hippocampus support inference by linking memories for separate life events.
Scientific Abstract
Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.
Citation
Free Full Text at Europe PMC
PMC7116148Downloads