Neural inhibition for continual learning and memory.
Scientific Abstract
Humans are able to continually learn new information and acquire skills that meet the demands of an ever-changing environment. Yet, this new learning does not necessarily occur at the expense of old memories. The specialised biological mechanisms that permit continual learning in humans and other mammals are not fully understood. Here I explore the possibility that neural inhibition plays an important role. I present recent findings from studies in humans that suggest inhibition regulates the stability of neural networks to gate cortical plasticity and memory retrieval. These studies use non-invasive methods to obtain an indirect measure of neural inhibition and corroborate comparable findings in animals. Together these studies reveal a model whereby neural inhibition protects memories from interference to permit continual learning. Neural inhibition may, therefore, play a critical role in the computations that underlie higher-order cognition and adaptive behaviour.
Similar content
Memory reactivation during rest forms shortcuts in a cognitive map.
tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel
A Checklist for Assessing the Methodological Quality of Concurrent tES-fMRI Studies (ContES Checklist): A Consensus Study and Statement
A mechanism for hippocampal memory recall based on excitatory-inhibitory fluctuations in neocortex
Neural inhibition for continual learning and memory.
Scientific Abstract
Humans are able to continually learn new information and acquire skills that meet the demands of an ever-changing environment. Yet, this new learning does not necessarily occur at the expense of old memories. The specialised biological mechanisms that permit continual learning in humans and other mammals are not fully understood. Here I explore the possibility that neural inhibition plays an important role. I present recent findings from studies in humans that suggest inhibition regulates the stability of neural networks to gate cortical plasticity and memory retrieval. These studies use non-invasive methods to obtain an indirect measure of neural inhibition and corroborate comparable findings in animals. Together these studies reveal a model whereby neural inhibition protects memories from interference to permit continual learning. Neural inhibition may, therefore, play a critical role in the computations that underlie higher-order cognition and adaptive behaviour.