Memory reactivation generates new, adaptive behaviours that reach beyond direct experience.

Taking breaks after learning helps our brain discover things we weren’t directly taught. However, it’s unclear how this happens. This study used a technique called Targeted Memory Reactivation to guide the brain’s natural replay of recent memories during rest and found it helped people discover new connections to support inference. This suggests that replaying memories during rest is key to finding hidden links and solutions to novel problems.

Scientific Abstract

Periods of rest and sleep help us find hidden solutions to new problems and infer unobserved relationships between discrete events. However, the mechanisms that formulate these new, adaptive behavioural strategies remain unclear. One possibility is that memory reactivation during periods of rest and sleep has the capacity to generate new knowledge that extends beyond direct experience. Here, we test this hypothesis using a pre-registered study design that includes a rich behavioural paradigm in humans. We use contextual Targeted Memory Reactivation (TMR) to causally manipulate memory reactivation during awake rest. We demonstrate that TMR during rest enhances performance on associative memory tests, with improved discovery of new, non-directly trained associations, and no change observed for directly trained associations. Our findings suggest that memory reactivation during awake rest plays a critical role in extracting new, unobserved associations to support adaptive behavioural strategies such as inference.

Similar content

Preprint
Nandi T, Puonti O, Clarke WT, Nettekoven CR, Barron HC, Kolasinski J, Hanayik T, Hinson EL, Berrington A, Bachtiar V, Johnstone A, Winkler AM, Thielscher A, Johansen-Berg H, Stagg CJ

tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel

Preprint
Ekhtiari H, Ghobadi-Azbari P, Thielscher A, Antal A, Li LM, Shereen AD, Cabral-Calderin Y, Keeser D, Bergmann TO, Jamil A, Violante IR, Almeida J, Meinzer M, Siebner HR, Woods AJ, Stagg CJ, Abend R, Antonenko D, Auer T, Bächinger M, Baeken C, Barron HC, Chase HW, Crinion J, Datta A, Davis MH, Ebrahimi M, Esmaeilpour Z, Falcone B, Fiori V, Ghodratitoostani I, Gilam G, Grabner RH, Greenspan JD, Groen G, Hartwigsen G, Hauser TU, Herrmann CS, Juan CH, Krekelberg B, Lefebvre S, Liew SL, Madsen KH, Mahdavifar-Khayati R, Malmir N, Marangolo P, Martin AK, Meeker TJ, Ardabili HM, Moisa M, Momi D, Mulyana B, Opitz A, Orlov N, Ragert P, Ruff CC, Ruffini G, Ruttorf M, Sangchooli A, Schellhorn K, Schlaug G, Sehm B, Soleimani G, Tavakoli H, Thompson B, Timmann D, Tsuchiyagaito A, Ulrich M, Vosskuhl J, Weinrich CA, Zare-Bidoky M, Zhang X, Zoefel B, Nitsche MA, Bikson M

A Checklist for Assessing the Methodological Quality of Concurrent tES-fMRI Studies (ContES Checklist): A Consensus Study and Statement

Memory reactivation generates new, adaptive behaviours that reach beyond direct experience.

Taking breaks after learning helps our brain discover things we weren’t directly taught. However, it’s unclear how this happens. This study used a technique called Targeted Memory Reactivation to guide the brain’s natural replay of recent memories during rest and found it helped people discover new connections to support inference. This suggests that replaying memories during rest is key to finding hidden links and solutions to novel problems.

Scientific Abstract

Periods of rest and sleep help us find hidden solutions to new problems and infer unobserved relationships between discrete events. However, the mechanisms that formulate these new, adaptive behavioural strategies remain unclear. One possibility is that memory reactivation during periods of rest and sleep has the capacity to generate new knowledge that extends beyond direct experience. Here, we test this hypothesis using a pre-registered study design that includes a rich behavioural paradigm in humans. We use contextual Targeted Memory Reactivation (TMR) to causally manipulate memory reactivation during awake rest. We demonstrate that TMR during rest enhances performance on associative memory tests, with improved discovery of new, non-directly trained associations, and no change observed for directly trained associations. Our findings suggest that memory reactivation during awake rest plays a critical role in extracting new, unobserved associations to support adaptive behavioural strategies such as inference.

Citation

2024. Sci Rep, 14(1):30097.

DOI

10.1038/s41598-024-78906-1

Free Full Text at Europe PMC

PMC11615380

Downloads

View PDF (4MB)

Similar content

Preprint
Nandi T, Puonti O, Clarke WT, Nettekoven CR, Barron HC, Kolasinski J, Hanayik T, Hinson EL, Berrington A, Bachtiar V, Johnstone A, Winkler AM, Thielscher A, Johansen-Berg H, Stagg CJ

tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel

Preprint
Ekhtiari H, Ghobadi-Azbari P, Thielscher A, Antal A, Li LM, Shereen AD, Cabral-Calderin Y, Keeser D, Bergmann TO, Jamil A, Violante IR, Almeida J, Meinzer M, Siebner HR, Woods AJ, Stagg CJ, Abend R, Antonenko D, Auer T, Bächinger M, Baeken C, Barron HC, Chase HW, Crinion J, Datta A, Davis MH, Ebrahimi M, Esmaeilpour Z, Falcone B, Fiori V, Ghodratitoostani I, Gilam G, Grabner RH, Greenspan JD, Groen G, Hartwigsen G, Hauser TU, Herrmann CS, Juan CH, Krekelberg B, Lefebvre S, Liew SL, Madsen KH, Mahdavifar-Khayati R, Malmir N, Marangolo P, Martin AK, Meeker TJ, Ardabili HM, Moisa M, Momi D, Mulyana B, Opitz A, Orlov N, Ragert P, Ruff CC, Ruffini G, Ruttorf M, Sangchooli A, Schellhorn K, Schlaug G, Sehm B, Soleimani G, Tavakoli H, Thompson B, Timmann D, Tsuchiyagaito A, Ulrich M, Vosskuhl J, Weinrich CA, Zare-Bidoky M, Zhang X, Zoefel B, Nitsche MA, Bikson M

A Checklist for Assessing the Methodological Quality of Concurrent tES-fMRI Studies (ContES Checklist): A Consensus Study and Statement