Uncertainty-guided learning with scaled prediction errors in the basal ganglia.
When feedback is less reliable, it should influence learning to a smaller extent. This paper proposes how this principle is achieved in nerve cell circuits responsible for reinforcement learning in a brain region known as the basal ganglia. The paper describes a computational model where the activity of nerve cells releasing the chemical messenger dopamine is scaled by the uncertainty, which explains the observed patterns of activity of these cells.
Scientific Abstract
Similar content
Striatal dopamine reflects individual long-term learning trajectories
Benchmarking Predictive Coding Networks - Made Simple
Predictive Coding Model Detects Novelty on Different Levels of Representation Hierarchy.
Uncertainty-guided learning with scaled prediction errors in the basal ganglia.
When feedback is less reliable, it should influence learning to a smaller extent. This paper proposes how this principle is achieved in nerve cell circuits responsible for reinforcement learning in a brain region known as the basal ganglia. The paper describes a computational model where the activity of nerve cells releasing the chemical messenger dopamine is scaled by the uncertainty, which explains the observed patterns of activity of these cells.
Scientific Abstract
Citation
DOI
Free Full Text at Europe PMC
PMC9182698Downloads