The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks.
Scientific Abstract
In this article, the authors consider optimal decision making in two-alternative forced-choice (TAFC) tasks. They begin by analyzing 6 models of TAFC decision making and show that all but one can be reduced to the drift diffusion model, implementing the statistically optimal algorithm (most accurate for a given speed or fastest for a given accuracy). They prove further that there is always an optimal trade-off between speed and accuracy that maximizes various reward functions, including reward rate (percentage of correct responses per unit time), as well as several other objective functions, including ones weighted for accuracy. They use these findings to address empirical data and make novel predictions about performance under optimality.
Similar content
Preprint
Striatal dopamine reflects individual long-term learning trajectories
Paper
Benchmarking Predictive Coding Networks - Made Simple
2025. International Conference on Learning Representations
Paper
Predictive Coding Model Detects Novelty on Different Levels of Representation Hierarchy.
2025. Neural Comput, 37(8):1373-1408.
Free Full Text at Europe PMC
PMC7618029
The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks.
Scientific Abstract
In this article, the authors consider optimal decision making in two-alternative forced-choice (TAFC) tasks. They begin by analyzing 6 models of TAFC decision making and show that all but one can be reduced to the drift diffusion model, implementing the statistically optimal algorithm (most accurate for a given speed or fastest for a given accuracy). They prove further that there is always an optimal trade-off between speed and accuracy that maximizes various reward functions, including reward rate (percentage of correct responses per unit time), as well as several other objective functions, including ones weighted for accuracy. They use these findings to address empirical data and make novel predictions about performance under optimality.
Citation
2006.Psychol Rev, 113(4):700-65.
Downloads
Similar content
Preprint
Striatal dopamine reflects individual long-term learning trajectories
Paper
Benchmarking Predictive Coding Networks - Made Simple
2025. International Conference on Learning Representations
Paper
Predictive Coding Model Detects Novelty on Different Levels of Representation Hierarchy.
2025. Neural Comput, 37(8):1373-1408.
Free Full Text at Europe PMC
PMC7618029